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Abstract 

The aim of this paper is to examine the behavior of the required return (discount rate) in the present 
value method. This method is regularly used in capital budgeting and investment planning to evaluate the 
favorability of various decisions. In addition, it is commonly used in the valuation of companies in the 
form of discounted cash flows. In many cases we notice that the users of this method use deterministic 
and time-invariant required returns without questioning the assumptions underlying such behavior. We 
show that the timely behavior of the discount rate depends on the stochastic process that generates the 
stream of cash flows. We show that required returns (or discount rates) are deterministic and time-
invariant if the cash-flow generating process is undisrupted and autoregressive of first order. Other 
processes generally lead to either time-varying or stochastic discount rates. If the cash flow is generated 
by a trend-stationary process or specific types of disrupted autoregressive processes, the present value 
approach can easily be adjusted to produce correct values. More complex cash flows generally require 
stochastic discount rates. This means that the application of the traditional present value method 
becomes questionable. 
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1 Introduction 

In normative present value models found in many standard textbooks on finance, investment analysis or 
firm valuation (Koller et al., 2010; Hillier at al., 2012; Berk & DeMarzo, 2019; Brealey et al., 2023) it seems 
to be common that cash flows of limited lifetime are discounted by means of deterministic and constant 
(time invariant) discount rates. There exists a significant number of empirical articles that deal with time-
dependent expected returns. For example, Campbell & Mei (1993) found that the changes in stock prices 
are more due to changes in expected returns than in cash flows. Timmermann (1995) tested the 
cointegration of present values and dividends when discount rates are time-varying.  Fama & French 
(2002) and Gagliardini, et al (2016) point at changes of the equity-premium over time; Rosenberg & Engle 
(2002) estimate time-varying pricing kernels; Tresroci (2013) looks at the time-variation of betas. Based 
on these empirical observations, it is possible to develop models that could predict present values, 
discount rates, or both by means of econometric models (Campbell & Schiller, 1988; Geltner & Mei, 1995; 
Ang & Liu, 2004).  

Contrary to this empirical research, we want to explain the variation of required returns (discount rates) 
purely from the theoretical examination of the behavior of cash flows and continuation values over the 
lifespan of cash-flow streams. We show that even though pricing kernels, betas, or risk-free rates are 
constant, discount rates can become time-varying and even stochastic. We want to pinpoint the source 
of this behavior and give advice how to incorporate this into normative present value models. 

Deterministic and constant discount rates in normative present value models require relatively strict 
assumptions concerning the stochastic properties of streams of cash flows. The first aim of this paper is 
to show a set of sufficient assumption that allow discount rates to be constant and deterministic. The 
second aim is to show some circumstances that lead to time-varying or stochastic discount rates. For the 
user of present value methods, it is important to understand the reasons for both deterministic or 
stochastic and constant or time varying discount rates, such that it can be considered when calculating 
present values. 

The issues discussed in this paper originally triggered by our research on firm valuation. One of the most 
used approaches for valuing firms is the concept of discounted cash flow (DCF), which means that present 
value calculations are at the heart of these methods (Miles & Ezzell, 1980; Inselbag & Kaufold, 1997; 
Ruback, 2002; Becker, 2022). The researcher or user of DCF methods often examines how present values 
of equity and debt are affected by changes in the leverage (debt-to-equity financing), which in turn affects 
interest payments, repayments, tax advantages, costs of financial distress, or the disruption of the cash 
flows due to bankruptcy. I.e. changing the leverage affects the stochastic behavior of several cash flows 
that are valued in DCF methods. This quickly leads to complicated situations concerning the estimation of 
expected cash flows and their corresponding discount rates. In this strain of theoretical research, it has 
been observed that discount rates can vary over time. Examples are the discount rate of tax shields in 
Miles & Ezzell (1980), the required return on unlevered and levered equity as well as the weighted average 
costs of capital in Becker (2022 and 2024). 

In this paper we want to take a step back and examine the traditional present value calculation without 
having to go into the finesses of firm valuation. Particularly, we look at sufficient assumptions that lead 
to constant required returns. We further analyze how required returns behave if we change these 
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assumptions and provide alternative present value formulas for these cases. We also show when 
traditional present value calculations are no longer applicable. This basic knowledge is insightful for more 
complicated problems such as firm valuation. 

The sequel of this paper is structured as follows. In the following section we introduce a simple numerical 
example like in many ordinary textbooks in finance and investment analysis. Afterwards we turn to 
sufficient assumptions that allow constant discount rates. Particularly, we will see that first-order 
autoregressive cash flows without disruption are suitable for generating deterministic and constant 
required returns. Section 4 replaces the autoregressive process with a trend-stationary process. This leads 
to deterministic but time variant discount rates. Section 5 looks at an autoregressive cash flow that is 
disrupted. We will see that this case also allows the application of deterministic but time variant discount 
rates. Here we apply a particular rule for the disruption of the cash-flow stream, but this rule may not 
seem appealing for real-life applications like firm valuation. Therefore, it is replaced by another rule in 
section 6. This rule leads to discount rates that are both time-dependent and stochastic. Section 7 
concludes this paper. 

 

2 Introductory example & assumptions 

We begin our analysis with a simple numerical example. Table 1 presents the expected stream of cash 
flows that belongs to an investment project. Along with these cash flows, a deterministic (non-stochastic) 
and constant (time-invariant) discount rate 𝑟 is given: 

Point in time 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 
Expected cash flow 𝐶𝐹௧ n. a. 100 150 200 
Discount rate 𝑟 10 % 10 % 10 % n. a. 

Table 1: Cash flow and discount rates as input to the present-value calculation   

The traditional present value calculation proceeds as follows: 

 

𝑉଴ =
𝐶𝐹ଵ

1 + 𝑟
+

𝐶𝐹ଶ

(1 + 𝑟)ଶ
+

𝐶𝐹ଷ

(1 + 𝑟)ଷ
 

 

=
100

1 + 10 %
+

150

(1 + 10 %)ଶ
+

200

(1 + 10 %)ଷ
 

 

= 365.14 
 

(1) 

where 𝑉଴ denotes the present value at point in time 𝑡 = 0 of the expected cash flows 𝐶𝐹௧ at 𝑡 = 1, … ,3. 
This is the standard approach in many textbooks in finance and investment analysis, whenever we assume 
discrete points in time (Hillier at al. 2012; Berk & DeMarzo, 2019; Brealey et al., 2023). This approach is 
easily extended to annuities, perpetuities, or continuous cash flows. 

When writing down present-value calculations like (1), two essential aspects are hidden. First, discounting 
a multi-period stream of cash flows means that we discount two different quantities in each point in time 
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𝑡 = 1 to 𝑡 = 𝑇 − 1, specifically the cash flow at 𝑡 and the continuation value of all cash flows after 𝑡. This 
becomes apparent, if we use the following equivalent backward iteration for calculating present values: 

 

𝑉ଶ =
𝐶𝐹ଷ

1 + 𝑟
=

200

1 + 10 %
= 181.82 

 

𝑉ଵ =
𝐶𝐹ଶ + 𝑉ଶ

1 + 𝑟
=

150 + 181.82

1 + 10 %
= 301.65 

 

𝑉଴ =
𝐶𝐹ଵ + 𝑉ଵ

1 + 𝑟
=

150 + 301.65

1 + 10 %
= 365.14 

(2) 

In these calculations we see that the same discount rate is applied to the cash flow alone (particularly 
𝐶𝐹ଷ) and for the cash flow and discontinuation joint together (for example 𝐶𝐹ଶ + 𝑉ଶ). This raises the 
question, which assumptions underly the following approach, which is explicitly used in the backward 
iteration (2) and implicit in the summation formula (1): 

𝑉௧ =
𝐶𝐹௧ାଵ + 𝑉௧ାଵ

1 + 𝑟େ୚
=

𝐶𝐹௧ାଵ

1 + 𝑟େ
+

𝑉௧ାଵ

1 + 𝑟୚
    with   𝑟େ୚ = 𝑟େ = 𝑟୚ 

The second aspect that is hidden away, is the stochastic process that generates the expected cash flows 
in expressions (1) or (2). In Figure 1, we illustrate the stochastic nature behind the expected cash flow 
(indicated in grey) by means of a scenario tree. This scenario tree considers four points in time, starting 
at 𝑡 = 0 and ending at 𝑡 = 3. Cash flows appear at points in time 𝑡 = 1 to 𝑡 = 3. We are interested in 
calculating their value at point in time 𝑡 = 0. The nodes in this tree represent possible states of the world. 
Departing from some initial node 𝑛 = 0, there is a transition to three possible states 𝑛 = 1 to 𝑛 = 3, and 
then from each state (node) there will be another transition into one of three possible states, and so 
forth. The probabilities for transitioning from a parent node to some child node 𝑛 is denoted by 𝑝௡. In 
addition, a risk neutral probability 𝑝௡

∗  is considered, which we will use to define a pricing kernel. Whenever 
we refer to some cash flow or value in a particular node of the scenario tree, we use brackets in the 
subscript, for example 𝐶𝐹[ଶ] and 𝑉[ଶ] refer to the cash flow and value that appear in node 2. If brackets 
are absent, then cash flows or values are related to points in time, for example 𝐶𝐹ଶ and 𝑉ଶ refer to the 
cash flow and value that appears at point in time 𝑡 = 2. 

In the tree of Figure 1 it becomes transparent that both the cash flow 𝐶𝐹௧ and continuation value 𝑉௧ can 
be stochastic. For example, if we are in a state of the world indicated by node 𝑛 = 1 then we must 
discount the expectation of the cash flows 𝐶𝐹[ସ], 𝐶𝐹[ହ], and 𝐶𝐹[଺]. Furthermore, we need to discount the 

expectation of the continuation values 𝑉[ସ], 𝑉[ହ], and 𝑉[଺]. It would therefore be legitimate to ask whether 

the same discount factor can be used for both the expected cash flow and the expected continuation 
value. If we would reject that 𝑟େ୚ = 𝑟େ = 𝑟୚, then 𝑟େ୚ will generally be time-varying even if 𝑟େ and 𝑟୚ 
remain constant over time, because the magnitudes of 𝐶𝐹௧ and 𝑉௧ relative to each other will generally 
change over time. 

Another legitimate question that becomes apparent from the scenario tree is whether discount rates can 
be assumed to be deterministic. For example, it cannot be ruled out that the discount rates 𝑟େ,[ଵ], 𝑟େ,[ଶ], 

and 𝑟େ,[ଷ] (and equivalently 𝑟୚,[௡] and 𝑟େ୚,[௡]) are all different. In the end they depend on the stochasticity 

of the cash flows and continuation values in the succeeding point in time. 
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In other words, if we want to defend the traditional present value formulas like (1) or (2) we need to ask, 
what are practically reasonable assumptions for this. If these assumptions are not met, can we simply 
adjust the present value method to give appropriate values? When do traditional present value formulas 
like (1) and (2) become problematic? 

To answer these questions, we introduce a more precise notation for the present value calculations. 
Particularly, we formulate the following backward iteration process: 

 𝑉௧ | ℱ௧ =
𝔼ൣ𝐶𝐹෪

௧ାଵ | ℱ௧൧

1 + 𝑟େ,௧ | ℱ௧
+

𝔼[𝑉෨௧ାଵ | ℱ௧]

1 + 𝑟୚,௧ | ℱ௧
=

𝔼ൣ𝐶𝐹෪
௧ାଵ | ℱ௧൧ + 𝔼[𝑉෨௧ାଵ | ℱ௧]

1 + 𝑟େ୚,௧  | ℱ௧
 (3) 

where ℱ௧ describes the information that is available at point in time 𝑡, at which we calculate the 
expectation 𝔼 of the stochastic cash flow 𝐶𝐹෪

௧ାଵ or the stochastic continuation value 𝑉෨௧ାଵ. All discount 
rates also depend on the state of the world (the information available) at 𝑡. 

A special case appears if discount rates are deterministic. We can then simply replace ℱ௧ with ℱ଴ on the 
discount rates. This yields: 

 𝑉௧ | ℱ௧ =
𝔼ൣ𝐶𝐹෪

௧ାଵ | ℱ௧൧

1 + 𝑟େ,௧ | ℱ଴
+

𝔼[𝑉෨௧ାଵ | ℱ௧]

1 + 𝑟୚,௧  | ℱ଴
=

𝔼ൣ𝐶𝐹෪
௧ାଵ | ℱ௧൧ + 𝔼[𝑉෨௧ାଵ | ℱ௧]

1 + 𝑟େ୚,௧ | ℱ଴
 (4) 

A further simplification appears if both the conditional expectations of cash flows and continuation values 
become deterministic, i.e. everything depends only on ℱ଴, and we can basically omit the ℱ-notation:  

 𝑉௧ =
𝔼ൣ𝐶𝐹෪

௧ାଵ ൧

1 + 𝑟େ,௧ 
+

𝔼[𝑉෨௧ାଵ ]

1 + 𝑟୚,௧
=

𝔼ൣ𝐶𝐹෪
௧ାଵ൧ + 𝔼[𝑉෨௧ାଵ]

1 + 𝑟େ୚,௧
 (5) 

This can be equivalently expressed by means of the following summation formula: 

𝑉଴ =
𝔼ൣ𝐶𝐹෪

ଵ൧

1 + 𝑟େ୚,଴
+

𝔼ൣ𝐶𝐹෪
ଶ൧

൫1 + 𝑟େ୚,଴൯ ∙ ൫1 + 𝑟େ୚,ଵ൯
+ ⋯ +

𝔼ൣ𝐶𝐹෪
்൧

൫1 + 𝑟େ୚,଴൯ ∙ ൫1 + 𝑟େ୚,ଵ൯ ∙ … ∙ ൫1 + 𝑟େ୚,்ିଵ൯
 (6) 

Finally, the simplest case appears with 𝑟େ୚,଴ = 𝑟େ୚,ଵ = ⋯ = 𝑟େ୚,்ିଵ which brings us back to expression 
(1), with a slightly more precise notation that highlights the expectations: 

 𝑉଴ =
𝔼ൣ𝐶𝐹෪

ଵ൧

1 + 𝑟େ୚
+

𝔼ൣ𝐶𝐹෪
ଶ൧

(1 + 𝑟େ୚)ଶ
+ ⋯ +

𝔼ൣ𝐶𝐹෪
்൧

(1 + 𝑟େ୚)்
 (7) 

 

 



Page 6 

 

Figure 1: Representation of the expected cash-flow stream by means of a scenario tree 
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Before, we state reasonable assumptions, we shortly look into the definition of the discount rates, for 
which we make use of the first fundamental theorem of asset pricing (Pascucci, 2011). It states that a 
market is free of arbitrage if there exists at least one risk neutral probability measure that is equivalent 
to the original probability measure. This means that value 𝑉௧ in expression (3), can be equally computed 
by the following expression: 

 𝑉௧ | ℱ௧ =
𝔼∗ൣ𝐶𝐹෪

௧ାଵ | ℱ௧൧

1 + 𝑟୤,௧ | ℱ௧
+

𝔼∗[𝑉෨௧ାଵ | ℱ௧]

1 + 𝑟୤,௧  | ℱ௧
=

𝔼∗ൣ𝐶𝐹෪
௧ାଵ | ℱ௧൧ + 𝔼∗[𝑉෨௧ାଵ | ℱ௧]

1 + 𝑟୤,௧  | ℱ௧
 (8) 

where  𝔼∗ is the risk-neutral conditional expectation and 𝑟୤,௧ is the risk-free rate. Let us refer to the 
probability measures underlying 𝔼 and 𝔼∗ as 𝒫 (original probability measure) and 𝒫∗ (risk neutral 
probability measure). Looking at the tree in Figure 1, the probability measure 𝒫[ଵ] consists of the 
probabilities 𝑝[ସ], 𝑝[ହ] and 𝑝[଺]. The risk-neutral measure 𝒫[ଵ]

∗  consists of the probabilities 𝑝[ସ]
∗ , 𝑝[ହ]

∗  and 

𝑝[଺]
∗ . 

In what follows, we make two assumptions that are maintained throughout the remainder of this paper. 

Assumption 1 – Additivity of present values: We assume that present values are additive: 

𝑉ൣ𝐶𝐹෪
஺ + 𝐶𝐹෪

஻൧ = 𝑉ൣ𝐶𝐹෪
஺൧ + 𝑉ൣ𝐶𝐹෪

஻൧ 

The additivity of present values is based on the arbitrage-free nature of capital markets (Varian, 2012). A 
special case of this additivity appears if 𝐶𝐹෪

஻ = (𝑐 − 1) ∙ 𝐶𝐹෪
஺ where 𝑐 − 1 is a constant. With this, we want 

to say that  𝐶𝐹෪
஻ is a multiple of 𝐶𝐹෪

஺, and we can state that: 

𝑉ൣ𝑐 ∙ 𝐶𝐹෪
஺൧ = 𝑐 ∙ 𝑉ൣ𝐶𝐹෪

஺൧ 

Assumption 2a – Deterministic probability measures and risk-free rate (constant pricing kernel throughout 
time). Particularly, we assume that the distribution measures underlying the expectations in (3) and (8) 
as well as the risk-free rate are deterministic, i. e. 

(𝒫௧| ℱ௧) = (𝒫௧ | ℱ଴), (𝒫௧
∗| ℱ௧) = (𝒫௧

∗ | ℱ଴), ൫𝑟୤,௧| ℱ௧൯ = ൫𝑟୤,௧ | ℱ଴൯ 

For the tree in Figure 1 this means that all the probability measures of a particular point in time are the 
same. For example, at 𝑡 = 1, we would have 𝒫[ଵ] = 𝒫[ଶ] = 𝒫[ଷ] and 𝒫[ଵ]

∗ = 𝒫[ଶ]
∗ = 𝒫[ଷ]

∗ . In addition, we 

assume that 𝑟୤,[ଵ] = 𝑟୤,[ଶ] = 𝑟୤,[ଷ]. 

There exists empirical evidence that pricing kernels do not remain constant over time (Rosenbaum and 
Engle, 2002). I.e. pricing kernels do not only vary in time but are unforeseeable or unpredictable. Clearly, 
pricing kernels represent aggregated preferences and beliefs concerning return and risk, and will be 
subject to changes. However, a straightforward use of the traditional present value analysis like formula 
(1) is problematic if we assume stochastic pricing kernels, since we would have to deal with stochastic 
discount rates, i.e. 

 𝔼ൣ𝑉෨௧൫𝐶𝐹෪
௧ାଵ | ℱ௧൯ | ℱ௧ିଵ൧ = 𝔼 ቈ

𝔼ൣ𝐶𝐹෪
௧ାଵ | ℱ௧൧

1 + 𝑟̃௧ | ℱ௧
 | ℱ௧ିଵ቉   ≠   

𝔼ൣ𝐶𝐹෪
௧ାଵ |  ℱ௧ିଵ൧

𝔼[1 + 𝑟̃௧  | ℱ௧ିଵ]
 (9) 

 



Page 8 

In other words, we cannot discount expected cash flows with expected required returns, unless required 
returns are deterministic. Of course, we can find a discount rate 𝑟ᇱ that satisfies the following equation: 

𝔼ൣ𝑉෨௧൫𝐶𝐹෪
௧ାଵ | ℱ௧൯ | ℱ௧ିଵ൧ = 𝔼 ቈ

𝔼ൣ𝐶𝐹෪
௧ାଵ | ℱ௧൧

1 + 𝑟̃௧  | ℱ௧
 | ℱ௧ିଵ቉ =

𝔼ൣ𝐶𝐹෪
௧ାଵ |  ℱ௧ିଵ൧

1 + 𝑟ᇱ
 

However, the question remains how to interpret 𝑟ᇱ because 𝔼[1 + 𝑟̃௧  | ℱ௧ିଵ] represents the expected 
cost of capital (opportunity costs), but  𝑟ᇱ does not have this convenient economic meaning. 

Anyway, the purpose of this paper is not to discuss the treatment of stochastic pricing kernels in 
traditional present value calculations, but to study whether discount rates can turn out to be stochastic 
even though the pricing kernel is deterministic. 

Assumption 2b – Deterministic probability measures and risk-free rate (constant pricing kernel throughout 
time). Particularly, we assume that the distribution measures underlying the expectations in (3) and (8) 
as well as the risk-free rate are constant throughout time, i. e. 

𝒫௧| ℱ଴ = 𝒫 , 𝒫௧
∗| ℱ଴ = 𝒫∗ , 𝑟୤,௧ | ℱ଴ = 𝑟୤    for all 𝑡 

This assumption is not as critical as assumption 2a. It can be easily removed. Indeed, valuation 
practitioners may be tempted to consider the term structure of interest rates in their valuation models.  
However, the purpose of the paper is to show that discount rates will vary even though the pricing kernel 
is constant. In other words, we want to show that variations in discount rates must not solely be 
prescribed to changes in the pricing kernel. 

To build a valid present value model, we must add some more assumptions related to the stochastic 
nature of cash flows. In the following sections, we present different such assumptions and study their 
effect on the behavior of discount rates in present value calculations. 
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3 Undisrupted autoregressive cash flows 

In this section we add the following assumption: 

Assumption 3a – undisrupted first-order autoregressive stream of cash flows: The cash flow follows an 
autoregressive process of first order of the following form: 

𝑧̃௧ = 𝑧௧ିଵ ∙ 𝜀௧̃ 

𝐶𝐹෪
௧ = 𝑎௧ ∙ 𝑧̃௧ 

where 𝜀௧̃ is a stochastic input-parameter that is drawn independently from the same time-invariant 
distribution 𝒟 (this means 𝜀௧̃~𝒟 for all 𝑡). The variable 𝑧̃௧ can be interpreted as a basis cash flow, and 𝑎௧ 
is an additional deterministic scaling parameter, that allows cash flows to grow or shrink without changing 
its underlying stochasticity. It is important to note that these equations are stated as if we are at point in 
time 𝑡 − 1 where we already have observed the precise realization of 𝑧௧ିଵ. From the perspective of 𝑡 −

2, the precise value of 𝑧̃௧ିଵ has not yet been observed. We assume that some initial value 𝑧଴ is known.  

We write the autoregressive property of the cash flows more directly as follows: 

𝐶𝐹෪
௧ = 𝐶𝐹௧ିଵ ∙ 𝜀௧̃ ∙ 𝑏௧       where       𝑏௧ =

𝑎௧

𝑎௧ିଵ
 

It is worth to mention, that 𝜀௧̃ = 0 not only forces 𝐶𝐹௧ = 0, but it sets all future cash flows from 𝑡 + 1 and 
beyond to zero. This can be interpreted as a disruption of the cash flow. Such a situation is shown in Figure 
3 which will be discussed below. Apart from this special case, the cash flow is never disrupted and 
continues until infinity or some specified end of the lifetime of the cash-flow stream. 

In what follows we analyze the effects of assumptions 1, 2, and 3a on the discount rate. We start our 
evaluation process in the last point in time. Here we must determine the value of the cash flow 𝐶𝐹෪

் which 
according to assumption 3a is defined as: 𝐶𝐹෪

் = 𝐶𝐹்ିଵ ∙ 𝜀்̃ ∙ 𝑏். The value is determined as follows: 

𝑉்ିଵ =
𝔼்ିଵൣ𝐶𝐹෪

்൧

1 + 𝑟େ
=

𝐶𝐹்ିଵ ∙ 𝑏் ∙ 𝔼்ିଵ[𝜀்̃ ]

1 + 𝑟େ
 

The subscript 𝑇 − 1 on the expectation operator 𝔼 refers to the point in time at which we calculate this 
expectation. In other words, 𝔼்ିଵൣ𝐶𝐹෪

்൧ is the conditional expectation that can be calculated using the 
information ℱ்ିଵ available at 𝑇 − 1. The discount rate 𝑟େ represents the required return that is applied 
to any stochastic variable that is proportional to 𝜀்̃ . This is where we require assumption 1: 

𝑉்ିଵ[𝜀்̃ ] =
𝔼்ିଵ[𝜀்̃ ]

1 + 𝑟େ
      →       𝑉்ିଵൣ𝐶𝐹෪

்൧ = 𝑉்ିଵ[𝐶𝐹்ିଵ ∙ 𝑏் ∙ 𝜀்̃ ] 

 

= 𝐶𝐹்ିଵ ∙ 𝑏் ∙ 𝑉்ିଵ[𝜀்̃ ] 

 

=
𝐶𝐹்ିଵ ∙ 𝑏் ∙ 𝔼்ିଵ[𝜀்̃]

1 + 𝑟େ
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Now we move backwards to point in time 𝑇 − 2 where we can calculate the value of all future cash flows 
as follows: 

𝑉்ିଶ =
𝔼்ିଶൣ𝐶𝐹෪

்ିଵ൧ + 𝔼்ିଶ[𝑉෨்ିଵ]

1 + 𝑟େ୚,்ିଶ
=

𝔼்ିଶൣ𝐶𝐹෪
்ିଵ൧

1 + 𝑟େ
+

𝔼்ିଶ ቂ𝐶𝐹෪
்ିଵ ∙ 𝑏் ∙ 𝔼்ିଵ[𝜀்̃ ]ቃ

(1 + 𝑟େ) ∙ ൫1 + 𝑟୚,்ିଶ൯
 

where the values of 𝑟େ୚,்ିଶ and 𝑟୚,்ିଶ are preliminarily unknown and need to be established. Because 𝜀்̃ 
is independently and identically distributed, its expectation seen from 𝑇 − 2 is the same as seen from  
𝑇 − 1. This means, as we move from  𝑇 − 2 to 𝑇 − 1, the expectation 𝔼்ିଵ[𝜀்̃ ] does not change; it is 
deterministic. We make this clearer by denoting 𝔼்ିଶൣ𝔼்ିଵ[𝜀்̃ ]൧ = 𝔼்ିଶ[𝜀்̃ ] = 𝜀 .̅ We therefore write:  

𝑉்ିଶ =
𝔼்ିଶൣ𝐶𝐹෪

்ିଵ൧

1 + 𝑟େ
+

𝑏் ∙ 𝜀 ̅ ∙ 𝔼்ିଶൣ𝐶𝐹෪
்ିଵ൧

(1 + 𝑟େ)ଶ
 

Where 𝐶𝐹෪
்ିଵ is the only stochastic variable that is resolved during the transition from 𝑇 − 2 to 𝑇 − 1. 

Therefore, both the expected cash flow 𝔼்ିଶൣ𝐶𝐹෪
்ିଵ൧ and the expected continuation value 𝔼்ିଶ[𝑉෨்ିଵ] 

need to be discounted with the same required return, i. e. 𝑟େ = 𝑟୚ = 𝑟େ୚. Here, we have used assumption 
2 concerning the constant pricing kernel. This implies that 𝑟େ୚ remains constant over time. 

Figure 2 illustrates how the cash flows and continuation values evolve throughout time. The stochastic 
development is driven by the following input parameters: The initial basis cash flow is 𝑧଴ = 100; The 
stochastic term is 𝜀̃ = {2.3; 0.8; −0.1}, where each value can appear with the same probability of 1/3. 
The scaler takes the values: 𝑎ଵ = 1, 𝑎ଶ = 1.5, and 𝑎ଷ = 2. This gives the unconditional expected cash 
flows as shown in Table 1. 

Let us verify some of the calculations. The cash flows in nodes 13 to 15 are determined as follows (We 
use brackets to indicate that we refer to nodes in the scenario tree instead of time periods): 

𝐶𝐹[ଵଷ] = 𝑧଴ ∙ 𝜀[ଵ] ∙ 𝜀[ସ] ∙ 𝜀[ଵଷ] ∙ 𝑎ଶ = 100 ∙ 2.3 ∙ 2.3 ∙ 2.3 ∙ 2 = 2,433.40 

𝐶𝐹[ଵସ] = 𝑧଴ ∙ 𝜀[ଵ] ∙ 𝜀[ସ] ∙ 𝜀[ଵସ] ∙ 𝑎ଶ = 100 ∙ 2.3 ∙ 2.3 ∙ 0.8 ∙ 2 = 846.40 

𝐶𝐹[ଵହ] = 𝑧଴ ∙ 𝜀[ଵ] ∙ 𝜀[ସ] ∙ 𝜀[ଵହ] ∙ 𝑎ଶ = 100 ∙ 2.3 ∙ 2.3 ∙ (−0.1) ∙ 2 = −105.80 

The expected cash flow at 𝑡 = 3 conditional on the information in 𝑡 = 2 is therefore: 

𝔼ଶ[𝐶𝐹ଷ] =
1

3
∙ 2,433.40 +

1

3
∙ 846.40 +

1

3
∙ (−105.80) = 1,058.00 

Note that the unconditional expected cash flow for 𝑡 = 3 is 𝔼଴[𝐶𝐹ଷ] = 200 (the average of the cash flows 
in all nodes from 13 to 39). 

The continuation value in node 4 at 𝑡 = 2 of the expected cash flow at 𝑡 = 3 is:  

𝑉[ସ] =
1,058

1 + 10 %
= 961.82 

Accordingly, the values in nodes 5 and 6 are calculated. The conditional expectation in node 1 at 𝑡 = 1 of 
these values is as follows: 

𝔼[ଵ][𝑉෨ଶ] =
1

3
∙ 961.82 +

1

3
∙ 334.55 +

1

3
∙ (−41.82) = 418.18 
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The notation 𝔼[ଵ][𝑉෨ଶ] means that we are defining the conditional expectation in node 1 of the potentially 
stochastic value in period 𝑡 = 2. Let us now turn to the expected cash flow at 𝑡 = 2 conditional on node 
1 is: 

𝔼[ଵ]ൣ𝐶𝐹෪
ଶ ൧ =

1

3
∙ 793.50 +

1

3
∙ 276.00 +

1

3
∙ (−34.50) = 345.00 

The value in node 1 is then based on the following calculation: 

𝑉[ଵ] =
418.18 + 345.00

1 + 10 %
= 693.80 

Accordingly, the values in nodes 2 and 3 can be calculated. Finally, the value in node 0 at 𝑡 = 0 becomes:  

𝑉[଴] =

1
3 ∙ (230 + 693.80) +

1
3 ∙ (80 + 241.32) +

1
3 ∙ (−10 − 30.17)

1 + 10 %
= 365.14 

As we see, we could have applied the traditional present value formula shown in (1). It gives the same 
result. We can conclude that assumption 1, 2, and 3a allow the computation of present values with a 
constant (time invariant) and deterministic discount rate. 

Certainly, Assumptions 1, 2, and 3a are only sufficient, but not necessary for constant discount rates. 
However, they represent a somewhat stable and effective environment for valuation approaches. Of 
course, we can imagine that time-variant or stochastic pricing kernel coincides with some stochastic cash 
flow in such a way that the discount rates become constant. However, if we evaluate several streams of 
cash flows like in the analysis of mutually exclusive investment projects, we may have problems arguing 
why all streams of cash flows coincidently have constants discount rates. 
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Figure 2: Evolution of cash flows, values, and discount rates in the non-disrupted auto-regressive case 

Node 13
CF 2433.40

Node 4
CF 793.50 Node 14
Value 961.82 CF 846.40
Return 10.0000 %

Node 15
CF -105.80

Node 16
CF 846.40

Node 1 Node 5
CF 230.00 CF 276.00 Node 17
Value 693.80 Value 334.55 CF 294.40
Return 10.0000 % Return 10.0000 %

Node 18
CF -36.80

Node 19
CF -105.80

Node 6
CF -34.50 Node 20
Value -41.82 CF -36.80
Return 10.0000 %

Node 21
CF 4.60

Node 22
CF 846.40

Node 7
CF 276.00 Node 23
Value 334.55 CF 294.40
Return 10.0000 %

Node 24
CF -36.80

Node 25
CF 294.40

Node 2 Node 8
Node 0 CF 80.00 CF 96.00 Node 26
Value 365.14 Value 241.32 Value 116.36 CF 102.40
Return 10.0000 % Return 10.0000 % Return 10.0000 %

Node 27
CF -12.80

Node 28
CF -36.80

Node 9
CF -12.00 Node 29
Value -14.55 CF -12.80
Return 10.0000 %

Node 30
CF 1.60

Node 31
CF -105.80

Node 10
CF -34.50 Node 32
Value -41.82 CF -36.80
Return 10.0000 %

Node 33
CF 4.60

Node 34
CF -36.80

Node 3 Node 11
CF -10.00 CF -12.00 Node 35
Value -30.17 Value -14.55 CF -12.80
Return 10.0000 % Return 10.0000 %

Node 36
CF 1.60

Node 37
CF 4.60

Node 12
CF 1.50 Node 38
Value 1.82 CF 1.60
Return 10.0000 %

Node 39
CF -0.20
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Before, we move to another stochastic process, we want to look at the special case where 𝜀௧ = 0 with 
some positive probability. This situation is shown in the scenario tree in Figure 3. In nodes, 3, 6 and 9 we 
see that the future stream of cash flows becomes zero because 𝜀௧ = 0. This essentially means that the 
future cash flow is discontinued, and the continuation values in nodes 3, 6 and 9 are zero. Normally, a 
discount rate (return) is not defined for situations where both the expected cash flow and continuation 
value become Zero with certainty: 

0 =
0 + 0

1 + 𝑟
 

We may even tend to discount a certain cash flow of zero by the risk-free rate. However, since we can 
discount a cash flow (or continuation value) of zero with any discount rate, and still obtain a value of zero, 
we can apply the present value formula with a constant required return. Note that the constant required 
return in Figure 3 is different from 10 %, particularly it is 𝑟େ = 9.6 %. This is because we use another 
stochastic term, particularly 𝜀̃ = {2.3; 0.8;  0}. The reasoning behind this discount rate is shown in 
Appendix B. 

A critical aspect of first-order autoregressive processes with possible 𝜀௧ = 0 is that future cash flows can 
never become different from zero after point in time 𝑡 once they have become zero in 𝑡, and such a 
behavior might not be desired. In section 4, we will therefore look at another simple stochastic process. 

Another critical issue is the following: Once the cash flow becomes negative there is a high probability 
that negative cash flows will follow. In practice investment projects can be stopped, if future prospects 
look poor. We therefore look at disrupted cash flows in sections 5 and 6. 
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Figure 3: Disruption of the cash-flow stream in case of 𝜺 = 𝟎 

Node 13
CF 2433.40

Node 4
CF 793.50 Node 14
Value 997.51 CF 846.40
Return 9.6000 %

Node 15
CF 0.00

Node 16
CF 846.40

Node 1 Node 5
CF 230.00 CF 276.00 Node 17
Value 734.17 Value 346.96 CF 294.40
Return 9.6000 % Return 9.6000 %

Node 18
CF 0.00

Node 19
CF 0.00

Node 6
CF 0.00 Node 20
Value 0.00 CF 0.00
Return n.a.

Node 21
CF 0.00

Node 22
CF 846.40

Node 7
CF 276.00 Node 23
Value 346.96 CF 294.40
Return 9.6000 %

Node 24
CF 0.00

Node 25
CF 294.40

Node 2 Node 8
Node 0 CF 80.00 CF 96.00 Node 26
Value 395.24 Value 255.36 Value 120.68 CF 102.40
Return 9.6000 % Return 9.6000 % Return 9.6000 %

Node 27
CF 0.00

Node 28
CF 0.00

Node 9
CF 0.00 Node 29
Value 0.00 CF 0.00
Return n.a.

Node 30
CF 0.00

Node 31
CF 0.00

Node 10
CF 0.00 Node 32
Value 0.00 CF 0.00
Return n.a.

Node 33
CF 0.00

Node 34
CF 0.00

Node 3 Node 11
CF 0.00 CF 0.00 Node 35
Value 0.00 Value 0.00 CF 0.00
Return n.a. Return n.a.

Node 36
CF 0.00

Node 37
CF 0.00

Node 12
CF 0.00 Node 38
Value 0.00 CF 0.00
Return n.a.

Node 39
CF 0.00
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4 Undisrupted trend-stationary cash flows 

Contrary to the autoregressive property of the cash flow according to assumption 3a, we now assume 
that the cash flow behaves according to the following stochastic process: 

Assumption 3b – undisrupted trend-stationary stream of cash flows: The cash flow follows a trend-
stationary process of the following form: 

 𝐶𝐹෪
௧ = 𝜀௧̃ ∙ 𝑎௧      with     𝔼௧ିଵ[𝜀௧̃] = 1 (10) 

where 𝔼௧ିଵ denotes the expectation observable at point in time 𝑡 − 1 of the random term 𝜀௧̃ that is drawn 
independently from the same time-invariant distribution 𝒟 (i.e. 𝜀௧̃~𝒟 for all 𝑡). The deterministic 
parameter 𝑎௧ scales the cash flow up or down. This process implies that neither the cash flow  𝐶𝐹෪

௧ nor 𝜀௧̃ 
observed at t depend on information at preceding points in time. We refer to this process as a trend-
stationary process, since a scaler 𝑎௧ = 1 would leave us with a strictly stationary stream of cash flows. 

Let us now find the value of this stream of cash flows. We begin with the calculation of the value at 𝑡 =

𝑇 − 1 of the stochastic cash flow at 𝑇: 

𝑉்ିଵ =
𝔼்ିଵൣ𝐶𝐹෪

்൧

1 + 𝑟େ
=

𝑎் ∙ 𝔼்ିଵ[𝜀்̃ ]

1 + 𝑟େ
 

Like in the previous section we discount the expectation of the stochastic variable 𝜀௧̃ with the discount 
rate 𝑟େ. Now we move backwards in time where we have: 

𝑉்ିଶ =
𝔼்ିଶൣ𝐶𝐹෪

்ିଵ൧ + 𝔼்ିଶ[𝑉෨்ିଵ]

1 + 𝑟େ୚,்ିଶ
=

𝔼்ିଶൣ𝐶𝐹෪
்ିଵ൧

1 + 𝑟େ
+

𝔼்ିଶൣ𝑎் ∙ 𝔼்ିଵ[𝜀்̃ ]൧/(1 + 𝑟େ)

൫1 + 𝑟୚,்ିଶ൯
 

where 𝑟େ୚,்ିଶ and 𝑟୚,்ିଶ are preliminarily unknown discount rates which need to be established. Like in 

the previous section, 𝔼்ିଶൣ𝔼்ିଵ[𝜀்̃ ]൧ = 𝔼்ିଶ[𝜀்̃ ] = 𝜀்̅ . We see clearly that the continuation value does 
not depend on any information at preceding points in time; It is deterministic and therefore must be 
discounted with the risk-free rate. This means, that we have two parts that need to be discounted 
separately: (1) the cash flow that requires a return 𝑟େ, and (2) the continuation value that requires the 
risk-free rate 𝑟୚,்ିଶ = 𝑟୤: 

𝑉்ିଶ =
𝔼்ିଶൣ𝐶𝐹෪

்ିଵ൧ + 𝔼்ିଶ[𝑉෨்ିଵ]

1 + 𝑟େ୚,்ିଶ
=

𝔼்ିଶൣ𝐶𝐹෪
்ିଵ൧

1 + 𝑟େ
+

𝔼்ିଶ[𝑉෨்ିଵ]

1 + 𝑟୤
 

We can continue with backward iteration, and receive the following general equation for the calculation 
of values: 

 𝑉௧ିଵ =
𝔼௧ିଵൣ𝐶𝐹෪

௧൧ + 𝑉௧

1 + 𝑟େ୚,௧ିଵ
=

𝔼௧ିଵൣ𝐶𝐹෪
௧൧

1 + 𝑟େ
+

𝑉௧

1 + 𝑟୤
 (11) 

We see that the discount rate 𝑟େ୚,௧ିଵ in this recursive formulation can change over time, and its 

magnitude depends on the magnitudes of the expected cash flow 𝔼ൣ𝐶𝐹෪
௧൧ and deterministic continuation 

value 𝑉௧. 
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Particularly, the discount rate 𝑟େ୚,௧ିଵ can be calculated as follows: 

𝑟େ୚,௧ିଵ =
𝑉௧ିଵ

𝔼௧ିଵൣ𝐶𝐹෪
௧൧ + 𝑉௧

+ 1 

However, in this case we have already computed 𝑉௧ିଵ, and do not need the discount rate 𝑟େ୚,௧ିଵ 
anymore. However, we can define the following factors: 

 𝑣௧ =
𝔼௧ିଵൣ𝐶𝐹෪

௧൧

𝔼௧ିଵൣ𝐶𝐹෪
௧൧ + 𝔼௧ିଵ[𝑉෨௧]

,     1 − 𝑣௧ =
𝔼௧ିଵ[𝑉෨௧]

𝔼௧ିଵൣ𝐶𝐹෪
௧൧ + 𝔼௧ିଵ[𝑉෨௧]

 (12) 

Substituting these into (11) yields: 

1

1 + 𝑟େ୚,௧ିଵ
=

𝑣௧

1 + 𝑟େ
+

1 − 𝑣௧

1 + 𝑟୤
 

After solving for 𝑟େ୚,௧ିଵ we obtain: 

 𝑟େ୚,௧ିଵ =
(1 − 𝑣௧) ∙ 𝑟୤ + 𝑣௧ ∙ 𝑟େ + 𝑟େ ∙ 𝑟୤

1 + 𝑣௧ ∙ 𝑟୤ + (1 − 𝑣௧) ∙ 𝑟େ
 (13) 

This means that we can establish the discount rate 𝑟େ୚,௧ିଵ as some kind of weighted average of 𝑟୤ and 𝑟େ. 

Let us now turn to the calculation in Figure 4. This figure illustrates how the cash flows and continuation 
values evolve throughout time. The stochastic development is driven by the following input parameters: 
The stochastic term is 𝜀̃ = {230; 80; −10}, where each value can appear with the same probability of 
1/3. The scaler takes the values: 𝑎ଵ = 1, 𝑎ଶ = 1.5, and 𝑎ଷ = 2. This gives the expected cash flows as 
shown in Table 1. 

The cash flows in node 13 to 15 (and equally 16 to 18, 19 to 21, and so forth) are determined as follows: 

𝐶𝐹[ଵଷ] = 𝐶𝐹[ଵ଺] = ⋯ 𝐶𝐹[ଷ଻] = 230 ∙ 2 = 460 

𝐶𝐹[ଵସ] = 𝐶𝐹[ଵ଻] = ⋯ 𝐶𝐹[ଷ଼] = 80 ∙ 2 = 160 

𝐶𝐹[ଵହ] = 𝐶𝐹[ଵ଼] = ⋯ 𝐶𝐹[ଷଽ] = −10 ∙ 2 = −20 

The conditional expectation equals the unconditional expectation: 

𝔼ଶ[𝐶𝐹ଷ] =
1

3
∙ 460 +

1

3
∙ 160 +

1

3
∙ −20 = 200 

The values in all nodes at 𝑡 = 2 are the same: 

𝑉[ସ] = 𝑉[ହ] = ⋯ 𝑉[ଵଶ] =
200

1 + 10 %
= 181.82 

Likewise, we can calculate the value of all nodes in 𝑡 = 1: 

𝑉[ଵ] = 𝑉[ଶ] = 𝑉[ଷ] =
150

1 + 10 %
+

181.82

1 + 5 %
= 309.52 
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Continuing this approach, we will get to node 0 at 𝑡 = 0, where we have: 

𝑉[଴] =
100

1 + 10 %
+

309.52

1 + 5 %
= 385.69 

Now let us verify the calculation of the discount rate according to expression (13). We will here show the 
calculation for 𝑡 = 0. The rates at 𝑡 = 1 and 𝑡 = 2 can be determined accordingly. We start with 
calculating the factor 𝑣ଵ: 

𝑣ଵ =
100

100 + 309.52
= 24.4186 % 

We apply this factor together with 𝑟୤ and 𝑟େ in expression (13) and obtain: 

𝑟େ୚,଴ =
(1 − 24.4186 %) ∙ 5 % + 24.4186 % ∙ 10 % + 10 % ∙ 5 %

1 + 24.4186 % ∙ 5 % + (1 − 24.4186 %) ∙ 10 %
= 6.1785 % 

Since the conditional expectations of the cash flows and values equal their unconditional expectations we 
can calculate the present value directly by the following calculation, which contains the time-varying 
discount rates shown in Figure 4: 

𝑉଴ =
𝐶𝐹ଵ

1 + 𝑟େ୚,଴

+
𝐶𝐹ଶ

൫1 + 𝑟େ୚,଴൯ ∙ ൫1 + 𝑟େ୚,ଵ൯
+

𝐶𝐹ଷ

൫1 + 𝑟େ୚,଴൯ ∙ ൫1 + 𝑟େ୚,ଵ൯ ∙ ൫1 + 𝑟େ୚,ଶ൯
 

 

=
100

(1 + 6.1785 %)
+

150

(1 + 6.1785 %) ∙ (1 + 7.2028 %)
+

200

(1 + 6.1785 %) ∙ (1 + 7.2028 %) ∙ (1 + 10 %)
 

 

= 385.69 

A similar pattern of discount rates has been shown in Becker (2024) who studied the behavior of discount 
rates in the valuation of unlevered and levered firms. This and the previous section have analyzed cases 
where cash flows are not disrupted. The next section is devoted to the case where the stream of cash 
flows is discontinued.  
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Figure 4: Evolution of cash flows, values, and discount rates in the non-disrupted trend-stationary case 
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Node 19
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Node 6
CF -15.00 Node 20
Value 181.82 CF 160.00
Return 10.0000 %

Node 21
CF -20.00

Node 22
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Node 7
CF 345.00 Node 23
Value 181.82 CF 160.00
Return 10.0000 %

Node 24
CF -20.00

Node 25
CF 460.00

Node 2 Node 8
Node 0 CF 80.00 CF 120.00 Node 26
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Node 27
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Node 30
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Node 33
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Node 36
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Node 37
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Node 39
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5 Disrupted autoregressive cash flows 

In this section, we turn back to an autoregressive cash flow like in section 3. However, we replace 
assumption 3a with an assumption that allows the discontinuation of the cash flow. The discontinuation 
of cash flows receives practical relevance in cases where firms declare bankruptcy, or investment projects 
can be abandoned if future prospects look bad. 

Assumption 3c – Discontinued autoregressive cash flows: We assume the following process: 

𝑧̃௧ = ቐ

𝑧௧ିଵ ∙ 𝜀௧̃ if 𝑧௧ିଵ ≥ 0

⬚ ⬚ ⬚
0 if 𝑧௧ିଵ < 0

 

Like before, 𝜀௧̃ is a stochastic input-parameter that is drawn independently from the same time-invariant 
distribution 𝒟. We assume some 𝑧଴ > 0 that initiates the process {𝑧̃௧}௧ୀଵ,…,் which we refer to as the 
basis cash flow. This cash flow is disrupted at point in time 𝑡 + 1 (set to Zero for the remaining lifetime) 
once this cash flow becomes negative in 𝑡. A scaling factor 𝑎௧ > 0 allows the cash flow to be scaled up or 
down without changing its underlying stochasticity, i. e.: 

𝐶𝐹෪
௧ = 𝑎௧ ∙ 𝑧̃௧ 

Using these relationships, we can formulate the autoregressive cash flow more directly such that we see 
how 𝐶𝐹௧ depends on 𝐶𝐹௧ିଵ: 

𝐶𝐹෪
௧ = ቐ

𝐶𝐹௧ିଵ ∙ 𝑏௧ ∙ 𝜀௧̃ if 𝐶𝐹௧ିଵ ≥ 0

⬚ ⬚ ⬚
0 if 𝐶𝐹௧ିଵ < 0

    where  𝑏௧ =
𝑎௧

𝑎௧ିଵ
 

For the analysis below, we reformulate this expression slightly: 

 𝐶𝐹෪
௧ = ቐ

𝐶𝐹௧ିଵ ∙ 𝑏௧ ∙ 𝜀௧̃ if 𝜀௧ିଵ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀௧ିଵ < 0

 (14) 

Here we exploit the fact that, whenever 𝜀௧ି௞ ≤ 0 with 𝑘 > 1 then 𝐶𝐹௧ି௞ାଵ = 𝐶𝐹௧ି௞ାଶ = ⋯ = 0. This 
means that whenever the cash flow was disrupted at some point before 𝑡 − 1, the cash flow at 𝑡 − 1 is 
zero, even if 𝜀௧ିଵ > 0. 

Figure 5 illustrates this case. Let us for example look at node 3. In this node the cash flow is negative. 
Therefore, the cash-flow stream is disrupted, and all future cash flows are set to zero. This implies that 
the continuation value in node 3 must be zero. We can furthermore observe that returns cannot be 
calculated in cases where both the expected cash flow and its value are zero (for example in nodes 10, 
11, and 12). The input parameters used in the calculations are the same as in section 3. In what follows 
we develop the formulas that are necessary for obtaining the values and discount rates shown in Figure 
5. 
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Figure 5: Evolution of cash flows, values, and discount rates in the disrupted autoregressive case 

Node 13
CF 2433.40

Node 4
CF 793.50 Node 14
Value 961.82 CF 846.40
Return 10.0000 %

Node 15
CF -105.80

Node 16
CF 846.40

Node 1 Node 5
CF 230.00 CF 276.00 Node 17
Value 707.91 Value 334.55 CF 294.40
Return 9.7772 % Return 10.0000 %

Node 18
CF -36.80

Node 19
CF 0.00

Node 6
CF -34.50 Node 20
Value 0.00 CF 0.00
Return n.a.

Node 21
CF 0.00

Node 22
CF 846.40

Node 7
CF 276.00 Node 23
Value 334.55 CF 294.40
Return 10.0000 %

Node 24
CF -36.80

Node 25
CF 294.40

Node 2 Node 8
Node 0 CF 80.00 CF 96.00 Node 26
Value 381.10 Value 246.23 Value 116.36 CF 102.40
Return 9.6954 % Return 9.7772 % Return 10.0000 %

Node 27
CF -12.80

Node 28
CF 0.00

Node 9
CF -12.00 Node 29
Value 0.00 CF 0.00
Return n.a.

Node 30
CF 0.00

Node 31
CF 0.00

Node 10
CF 0.00 Node 32
Value 0.00 CF 0.00
Return n.a.

Node 33
CF 0.00

Node 34
CF 0.00

Node 3 Node 11
CF -10.00 CF 0.00 Node 35
Value 0.00 Value 0.00 CF 0.00
Return n.a. Return n.a.

Node 36
CF 0.00

Node 37
CF 0.00

Node 12
CF 0.00 Node 38
Value 0.00 CF 0.00
Return n.a.

Node 39
CF 0.00
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Let us have a look at the distribution of the values at point in time 𝑡 = 3. For the first two child nodes 
(that appear in 𝑡 = 4) of any parent node, we see that the futures (the remaining trees after these nodes) 
are the same, except for being scaled by the magnitude of the cash flow in the parent node. This means 
that the futures (i.e. all cash flows in the future) of the nodes 10, 11, 13, 14, 16, 17, and so forth, are 
proportional to each other. The third child node of any parent node has a value of 0 since the cash flow 
is discontinued. 

At point in time 𝑡 = 2, we have the same distribution of continuation values. The futures of the first two 
child nodes (for example 4 and 5, or 7 and 8) are the same except for being scaled by (proportional to) 
different initial cash flows, and the third child node (6 or 9) has a continuation value of 0. 

This means that the distribution of the values in the first two child nodes of any parent node is completely 
determined by the distribution of the cash flow that appears in this parent node, while the third child 
node is zero. This distribution of the values in any 𝑡 + 1 for a parent node in 𝑡 is the same for all parent 
nodes in all points in time. Hence, the continuation values need to be discounted by the same discount 
rate. How the distribution of continuation values coincides with the distribution of the cash flows depends 
on the probability of discontinuation. The lower this probability, the closer will be the discount rate of the 
continuation values to the discount rate of the cash flows. 

We now develop the valuation mathematically. We use the expression (14), and like before, we iterate 
backwards through time. We start with the calculation of the value at 𝑇 − 1 (we neglect the scaling 
factors; they can be added back afterwards): 

𝑉்ିଵ൫𝐶𝐹෪
்൯ =

⎩
⎨

⎧
𝐶𝐹்ିଵ ∙ 𝔼்ିଵ[𝜀்̃ ]

1 + 𝑟େ
if 𝜀்ିଵ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀்ିଵ < 0

 

All the deterministic parts are moved outside the expectation operator (note that we can also discount 
the Zero with (1 + 𝑟େ) without changing the result). This yields: 

𝑉்ିଵ൫𝐶𝐹෪
்൯ =

𝐶𝐹்ିଵ

1 + 𝑟େ
∙ ቐ

𝔼்ିଵ[𝜀்̃ ] if 𝜀்ିଵ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀்ିଵ < 0

 

The cash flow 𝐶𝐹்ିଵ depends on the cash flow 𝐶𝐹்ିଶ and the realization of 𝜀்ିଶ according to (14). Hence, 
we can write: 

If 𝜀்ିଶ ≥ 0 then we have: 

𝑉்ିଵ൫𝐶𝐹෪
்൯ =

𝐶𝐹்ିଶ ∙ 𝜀்ିଵ

1 + 𝑟େ
∙ ቐ

𝔼்ିଵ[𝜀்̃ ] if 𝜀்ିଵ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀்ିଵ < 0

 

If 𝜀்ିଶ < 0 then we have: 

𝑉்ିଵ൫𝐶𝐹෪
்൯ = 0 
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Let us work on the first case where 𝜀்ିଶ ≥ 0. The expectation of 𝑉்ିଵ seen from 𝑇 − 2 is as follows: 

𝔼்ିଶ[𝑉෨்ିଵ] = 𝔼்ିଶ ቎
𝐶𝐹்ିଶ ∙ 𝜀்̃ ିଵ

1 + 𝑟େ
∙ ቐ

𝔼்ିଵ[𝜀்̃ ] if 𝜀்̃ ିଵ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀்̃ ିଵ < 0

቏ 

Since any 𝜀௧̃ is independently and identically distributed, 𝔼்ିଵ[𝜀்̃ ] is deterministic; we denote it as 
𝔼்ିଵ[𝜀்̃ ] = 𝜀.̅  

𝔼்ିଶ[𝑉෨்ିଵ] = 𝔼்ିଶ ൥
𝐶𝐹்ିଶ ∙ 𝜀்̃ ିଵ

1 + 𝑟େ
∙ ൝

𝜀̅ if 𝜀்̃ ିଵ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀்̃ ିଵ < 0

൩ 

In this expression, we swap 𝜀்̃ ିଵ and 𝜀 ̅(note that Zero divided by 𝜀 ̅and multiplied by 𝜀்̃ ିଵ remains zero). 
Hence, we can rewrite: 

𝔼்ିଶ[𝑉෨்ିଵ] =
𝐶𝐹்ିଶ ∙ 𝜀 ̅

1 + 𝑟େ
∙ 𝔼்ିଶ ൥൝

𝜀்̃ ିଵ if 𝜀்̃ ିଵ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀்̃ ିଵ < 0

൩ 

The stochastic term ൝

𝜀்̃ ିଵ if 𝜀்̃ ିଵ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀்̃ ିଵ < 0

 has another risk than the term 𝜀்̃ ିଵ (all the negative 

realizations in 𝜀்̃ ିଵare replaced by zero). Hence, we need to apply another discount rate. Let us denote 
this rate as 𝑟୚,்ିଶ. Let us furthermore denote the new stochastic term and its expectation as follows: 

𝜀ା̃ = ൝
𝜀̃ if 𝜀̃ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀̃ < 0

ൡ , 𝜀ା̅ = 𝔼 ൥൝
𝜀̃ if 𝜀௧ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀̃ < 0

ൡ൩ 

Now we can calculate the value at 𝑇 − 2. In the following expression we consider that 𝜀்ିଶ ≥ 0 or 𝜀்ିଶ <

0: 

𝑉்ିଶ[𝑉෨்ିଵ] =
𝐶𝐹்ିଶ ∙ 𝜀 ̅ ∙ 𝜀ା̅

(1 + 𝑟େ) ∙ ൫1 + 𝑟୚,்ିଶ൯
∙ ൝

1 if 𝜀்ିଶ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀்ିଶ < 0

 

Again, we look at the stochasticity and expectation of this term as seen from 𝑇 − 3, where we now need 
to consider 𝐶𝐹෪

்ିଶ = 𝐶𝐹்ିଷ ∙ 𝜀்̃ ିଶ (if 𝜀்ିଷ ≥ 0): 

𝔼்ିଷ[𝑉෨்ିଶ] = 𝔼்ିଷ ൥
𝐶𝐹்ିଷ ∙ 𝜀்̃ ିଶ ∙ 𝜀 ̅ ∙ 𝜀ା̅

(1 + 𝑟େ) ∙ ൫1 + 𝑟୚,்ିଶ൯
∙ ൝

1 if 𝜀்̃ ିଶ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀்̃ ିଶ < 0

ൡ൩ 

We move all deterministic variables outside the expectation operator. This yields: 

𝔼்ିଷ[𝑉෨்ିଶ] =
𝐶𝐹்ିଷ ∙ 𝜀 ̅ ∙ 𝜀ା̅

(1 + 𝑟େ) ∙ ൫1 + 𝑟୚,்ିଶ൯
∙ 𝔼்ିଷ ൥൝

𝜀்̃ ିଶ if 𝜀்̃ ିଶ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀்̃ ିଶ < 0

ൡ൩ 

The stochastic term that drives the discount rate, namely ൝
𝜀்̃ ିଶ if 𝜀்̃ ିଶ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀்̃ ିଶ < 0

ൡ, is the same as above 

(note that 𝜀௧̃ is independently and identically distributed). Therefore, it needs to be discounted with the 
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same discount rate, i. e. 𝑟୚,்ିଶ = 𝑟୚,்ିଷ. We could continue the backward iteration to the beginning of 
the lifetime (𝑡 = 0) and would obtain the same stochastic factor 𝜀ା̃ to which the continuation values are 
proportional. Hence, the discount rate to be applied to the continuation values is time invariant, and we 
use the notation 𝑟୚. 

We can conclude two things: 

(a) The expected cash flow to be obtained at any point in time 𝑡 = 2, … , 𝑇 needs to be adjusted with 
some multiple of 𝜀ା̅. This is because we do not consider the full distribution of cash flows. 

(b) The cash flow at some point in time 𝑡 has to be discounted once with 𝑟େ to achieve its value at 𝑡 − 1, 
and afterwards this value is further discounted with the rate 𝑟୚. 

The recursive valuation can therefore be stated as: 

 𝔼଴ ቂ𝑉௧ିଵൣ𝐶𝐹෪
௧ + 𝑉෨௧൧ቃ =

𝔼଴ൣ𝐶𝐹෪
௧ିଵ൧ ∙ 𝜀 ̅ ∙ 𝜀ା̅

௧ିଵ

1 + 𝑟େ
+

𝔼଴[𝑉෨௧]

1 + 𝑟୚
 (15) 

where 𝔼଴ indicates that we deal with unconditional expectations (expectations seen from the perspective 
at 𝑡 = 0). The sum of the discounted cash flows can be written as: 

 𝑉଴ = ෍
𝔼଴ൣ𝐶𝐹෪

௧൧ ∙ 𝜀̅ ∙ 𝜀ା̅
௧ିଵ

(1 + 𝑟େ) ∙ (1 + 𝑟୚)௧ିଵ

்

௧ୀଵ

 (16) 

In what follows, we show some of the numerical calculations for the example illustrated in Figure 5. Based 
on the same input parameters like in section 3, we can determine the expectations of 𝜀̃ and 𝜀ା̃: 

𝜀̅ =
1

3
∙ 2.3 +

1

3
∙ 0.8 +

1

3
∙ (−0.1) = 1, 𝜀ା̅ =

1

3
∙ 2.3 +

1

3
∙ 0.8 +

1

3
∙ 0 =

31

30
 

With these parameters, we can compute the adjusted expected cash flows: 

𝔼଴[𝐶𝐹ଷ]ᇱ = 𝔼଴[𝐶𝐹ଷ] ∙ 𝜀̅ ∙ 𝜀ା̅
ଶ = 200 ∙ 1 ∙ (31/30)ଶ = 213.5556 

𝔼଴[𝐶𝐹ଶ]ᇱ = 𝔼଴[𝐶𝐹ଶ] ∙ 𝜀̅ ∙ 𝜀ା̅ = 150 ∙ 1 ∙ (31/30) = 155 

𝔼଴[𝐶𝐹ଵ]ᇱ = 𝔼଴[𝐶𝐹ଵ] ∙ 𝜀̅ = 100 ∙ 1 = 100 

Like before any stochastic variable proportional to 𝜀̃ is discounted with 𝑟େ = 10 %. In Addition, we need 
the discount rate that enables us to evaluate 𝜀ା̃. Here, we apply the rate 𝑟୚ = 9.6 %. We chose this rate 
to be lower than 𝑟େ since we reduce the riskiness, when eliminating negative outcomes and replacing 
them with Zero. 

The recursive valuation works as follows, if we discount parts of different risk separately: 

𝔼଴[𝑉ଶ] =
𝔼଴[𝐶𝐹ଷ]ᇱ

1 + 𝑟େ
=

213.5556

1 + 10 %
= 194.1414 

𝔼଴[𝑉ଵ] =
𝔼଴[𝐶𝐹ଶ]ᇱ

1 + 𝑟େ
+

𝔼଴[𝑉ଶ]

1 + 𝑟୚
=

155

1 + 10 %
+

194.1414

1 + 9.6 %
= 318.0454 

𝑉଴ =
𝔼଴[𝐶𝐹ଵ]ᇱ

1 + 𝑟େ
+

𝔼଴[𝑉ଵ]

1 + 𝑟୚
=

100

1 + 10 %
+

318.0454

1 + 9.6 %
= 381.0965 
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The sum of the discounted expected cash flows gives the same result: 

𝑉଴ =
𝔼଴[𝐶𝐹ଵ]ᇱ

1 + 𝑟େ
+

𝔼଴[𝐶𝐹ଶ]ᇱ

(1 + 𝑟େ) ∙ (1 + 𝑟୚)
+

𝔼଴[𝐶𝐹ଷ]ᇱ

(1 + 𝑟େ) ∙ (1 + 𝑟୚)ଶ
 

 

=
100

(1 + 10 %)
+

155

(1 + 10 %) ∙ (1 + 9.6 %)
+

213.5556

(1 + 10 %) ∙ (1 + 9.6 %)ଶ
 

 

= 381.0965 

Another equivalent calculation is based on the discount rates to applied to the cash flow 𝔼଴[𝐶𝐹௧]ᇱ and 
continuation value 𝔼଴[𝑉௧] jointly. They can be derived from the cash flows and values as follows: 

𝑟େ୚,ଶ = 𝑟େ = 10 % 

𝑟େ୚,ଵ =
𝔼଴[𝐶𝐹ଶ]ᇱ + 𝔼଴[𝑉ଶ]

𝔼଴[𝑉ଵ]
− 1 =

155 + 194.1414

318.0454
− 1 = 9.777 % 

𝑟େ୚,଴ =
𝔼଴[𝐶𝐹ଵ]ᇱ + 𝔼଴[𝑉ଵ]

𝔼଴[𝑉଴]
− 1 =

100 + 318.0454

381.0965
− 1 = 9.695 % 

The direct calculation of the present value 𝑉଴ based on this time-variant discount rates is as follows: 

𝑉଴ =
𝔼଴[𝐶𝐹ଵ]ᇱ

1 + 𝑟େ୚,଴
+

𝔼଴[𝐶𝐹ଶ]ᇱ

൫1 + 𝑟େ୚,଴൯ ∙ ൫1 + 𝑟େ୚,ଵ൯
+

𝔼଴[𝐶𝐹ଷ]ᇱ

൫1 + 𝑟େ୚,଴൯ ∙ ൫1 + 𝑟େ୚,ଵ൯ ∙ ൫1 + 𝑟େ୚,ଶ൯
 

 

=
100

(1 + 9.695 %)
+

155

(1 + 9.695 %) ∙ (1 + 9.777 %)
+

213.5556

(1 + 9.695 %) ∙ (1 + 9.777 %) ∙ (1 + 10 %)
 

 

= 381.0965 

It is worth mentioning that the formulas and discussion above rest on the assumption that the last 
negative cash flow, the cash flow just before the cash-flow stream is incurred (it is part of the valuation). 
Alternatively, we could have assumed that whenever a negative cash flow appears it will not be paid 
(incurred) as it would be the case if the project owners or equity holders have limited liability. In other 
words, the stream of cash flows is immediately disrupted before a negative cash flow can appear. 

In this case, the formulas (15) and (16) can be adjusted by replacing 𝜀  ̅with 𝜀ା̅. Hence, these formulas 
become the following: 

Recursive valuation 𝔼଴ ቂ𝑉௧ିଵൣ𝐶𝐹෪
௧ + 𝑉෨௧൧ቃ =

𝔼଴ൣ𝐶𝐹෪
௧ିଵ൧ ∙ 𝜀ା̅

௧

1 + 𝑟େ
+

𝔼଴[𝑉෨௧]

1 + 𝑟୚
 (17) 

Sum of the discounted cash flows 𝑉଴ = ෍
𝔼଴ൣ𝐶𝐹෪

௧൧ ∙ 𝜀ା̅
௧

(1 + 𝑟େ) ∙ (1 + 𝑟୚)௧ିଵ

்

௧ୀଵ

 (18) 

 



Page 25 

6 Alternative rules for the disruption of cash flows 

In this section, we consider another, in our opinion, practically more appealing rule for disrupting cash-
flow streams. In section 5, the stream of cash flows was discontinued whenever we observed a negative 
cash flow. In practice, however, we would like to continue projects with temporary negative cash flows 
as long as they promise a positive value of cash flows in the future. Hence, it is the future value that 
determines whether projects are abandoned or not. For example, a firm with limited liability, could 
declare bankruptcy (or abandon an investment) at point in time 𝑡 whenever both 𝐶𝐹௧ < 0 and 𝐶𝐹௧ + 𝑉௧ <

0. This means, whenever the firm receives a negative cash flow, it considers whether this cash flow can 
be compensated by some larger and positive value of future cash flows. If this is not the case the project 
or firm owners let the project/firm go bankrupt immediately, without taking responsibility for the 
negative cash flow (by not paying suppliers or debt holders). Another possibility is to consider a company 
with unlimited liability. It will cease its business if the prospects look poor (i. e.  𝑉௧ < 0), but it is 
responsible for the negative cash flow that has arisen so far. In the following, we restrict our analysis to 
the following rule:  

Assumption 3d - Autoregressive cash flows with discontinuation triggered by negative continuation value: 
The basis process is given as follows: 

𝑧̃௧ = 𝑧௧ିଵ ∙ 𝜀௧̃ 

Like before, 𝜀௧̃ is a stochastic input-parameter that is drawn independently from the same time-invariant 
distribution 𝒟, and {𝑧̃௧}௧ୀଵ,…,் is the basis process responsible for the cash flow. We allow the cash flow 
to be scaled: 

𝐶𝐹෪
௧ = 𝑎௧ ∙ 𝑧̃௧ 

This represents the cash flow, as if the firm (stream of cash flows) would continue into the future without 
disruption. The following terms/rules define the cash flow and continuation value for the case of 
disruption: 

𝐶𝐹෪
௧
ᇱ = ቐ

𝐶𝐹෪
௧ if 𝐶𝐹෪

௧ + 𝑉෨௧ ≥ 0

⬚ ⬚ ⬚
0 if 𝐶𝐹෪

௧ + 𝑉෨௧ < 0

 

𝑉෨௧
ᇱ = ቐ

𝑉෨௧ if 𝐶𝐹෪
௧ + 𝑉෨௧ ≥ 0

⬚ ⬚ ⬚
0 if 𝐶𝐹෪

௧ + 𝑉෨௧ < 0

 

It is important to notice that we first need to generate the whole sequence ൛𝐶𝐹෪
௧ൟ

௧ୀଵ,…,்
 before we can 

determine the 𝑉௧ିଵ൫𝐶𝐹෪
௧
ᇱ + 𝑉෨௧

ᇱ൯ by means of backward iteration. Using the same input parameters for 𝜀௧̃ 
and 𝑎௧ like in section 3, we obtain the cash flows shown in Figure 6. 
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The backward iteration by means of discount rates can be algebraically challenging. We therefore use the 
following backward iteration based on risk neutral probabilities: 

 𝑉[௡] = ෍
𝜋[௠]

1 + 𝑟୤
∙ ൫𝐶𝐹[௠] + 𝑉[௠]൯

⬚

௠∈𝒞(௡)

   for all nodes 𝑛 at points 𝑡 = 0 to 𝑡 = 𝑇 − 1 (19) 

where  𝜋[௠] represents the risk-neutral probability of transitioning to node (state) 𝑚, and 𝒞(𝑛) is the set 

of child nodes that arise from parent node 𝑛.  

Let us explain some of the calculations behind Figure 6. The cash flows generated throughout the tree are 
the same as in Figure 2. For every node in Figure 6 it is also indicated whether the cash flow will cease 
(stop) if we observe the condition 𝐶𝐹෪

௧ + 𝑉෨௧ < 0. Let us, for example, look at the cash flows in nodes 19, 
20, and 21, which are  –105.80, –36.8, and 4.6, respectively. Due to the limited liability, the investment 
owner cannot be held responsible for the negative cash flows in nodes 19 and 20. Hence, we have 

𝔼[଺]ൣ𝐶𝐹෪
ଷ൧

ᇱ
=

ଵ

ଷ
∙ 0 +

ଵ

ଷ
∙ 0 +

ଵ

ଷ
∙ 4.6 ≈ 1.5333 (not shown in the figure). The value of this expected cash 

flow is  𝑉[଺]ൣ𝐶𝐹෪
ଷ൧

ᇱ
=

గయ∙ସ.଺

ଵାହ %
=

଴.ଷହସଵ଼଴∙ସ.଺

ଵାହ %
= 1.5516. This value is larger than the expected cash flow, which 

indicates a negative discount rate. The amount of the negative cash flow in node 6 cannot be 
compensated by this value. Hence, the investment owners will abandon the project already in 𝑡 = 2 (if 
node 6 is realized as the state of the world). Therefore, the value to be considered in further backward 
iteration is 𝑉෨[଺]

ᇱ = 0. The same logic is applied to all other nodes in the tree. Having calculated the values 

of all nodes, the discount rates can be computed: 

𝑟[௡] =
∑ 𝑝[௠] ∙ ൫𝐶𝐹[௠] + 𝑉[௠]൯

⬚
௠∈𝒞(௡)

𝑉[௡]
− 1 

where 𝑝[௠] represents the real probability of transitioning to node (state) 𝑚, and 𝒞(𝑛) is the set of child 

nodes that arise from parent node 𝑛. 

We recognize that the discount rates in all nodes where the investment is continued are the same, and 
they coincide with 𝑟୚ = 9.6 %. We also see that the stream of cash flows is disrupted in the same nodes 
as in section 5. However, contrary to the case described in section 5, negative cash flows are not realized. 

For the example in Figure 6, this implies that we can apply 𝑟୚ = 𝑟େ = 𝑟େ୚ = 9.6 % to both continuation 
values and cash flows. Therefore, the following valuation is applicable for the example: 

𝑉௧ି௞ൣ𝐶𝐹෪
௧൧ =

⎩
⎨

⎧
𝐶𝐹௧ି௞ ∙ 𝜀ା̅

௞

(1 + 𝑟େ୚)௞
if 𝜀௧ି௞ ≥ 0

⬚ ⬚ ⬚
0 ⬚ 𝜀௧ି௞ < 0

 

This valuation is the same as expression (15), only that now 𝑟୚ = 𝑟େ. Equivalently the sum of discounted 
cash flows can be written as:  

𝑉଴ൣ൛𝐶𝐹෪
ଵ, … , 𝐶𝐹෪

ଵൟ൧ = ෍
𝐶𝐹௧ ∙ 𝜀ା̅

௧

(1 + 𝑟୚)௧

்

௧ୀଵ
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Filling this expression with numerical values, we obtain the value at 𝑡 = 0 as follows: 

𝑉଴ൣ൛𝐶𝐹෪
ଵ, … , 𝐶𝐹෪

ଵൟ൧ =
100

1 + 9.6 %
+

150 ∙ (31/30)

(1 + 9.6 %)ଶ
+

200 ∙ (31/30)ଷ

(1 + 9.6 %)ଷ
≈ 395.24 

Again, in this example we observe that the required return is deterministic and constant throughout time, 
because the continuation values become zero whenever the stochastic parameter 𝜀௧̃ is negative. 
However, there are situations where this is not the case. The longer the lifetime of the cash-flow stream 
the larger the continuation value. Particularly, the rule 𝐶𝐹෪

௧ + 𝑉෨௧ < 0 prefers positive values to be 
propagated to the present, while negative values are not. This implies that positive continuation values 
eventually outperform (overcompensate) negative cash flows. Such a situation can also be created if we 
scale future cash flows up compared to present cash flows. Such a situation is shown in Figure 7. In this 
figure, the initial stream of expected cash flows is 𝔼଴ൣ𝐶𝐹෪

ଵ൧ = 100, 𝔼଴ൣ𝐶𝐹෪
ଶ൧ = 150, and 𝔼଴ൣ𝐶𝐹෪

ଷ൧ =

10,000. Basically, the last cash flow is scaled up tremendously, such that we can show the effects in a 
scenario tree with few points in time. In Figure 7 we recognize that discount rates now become stochastic 
and time-variant. Hence, the traditional present-value approach cannot be applied. Particularly, we 

cannot discount an expected cash flow 𝔼଴ൣ𝐶𝐹෪
௧൧ with an expected discount rate 𝔼଴[𝑟̃௧ିଵ]. Instead, we 

require a stochastic backward iteration of the following form, where we would have to estimate different 
discount rates for different states in the world: 

 𝑉[௡] = ෍
𝑝[௠]

1 + 𝑟[୬]
∙ ൫𝐶𝐹[௠] + 𝑉[௠]൯

⬚

௠∈𝒞(௡)

   for all nodes 𝑛 at points 𝑡 = 0 to 𝑡 = 𝑇 − 1 (20) 
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Figure 6: Evolution of cash flows, values, and discount rates in the disrupted autoregressive case with the rule of disruption: 
𝑽 +  𝑪𝑭 <  𝟎  
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Figure 7: Stochastic discount rates for disrupted autoregressive CF streams 
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7 Summary and Outlook 

The purpose of this paper was to examine the behavior of the required return in the present value method 
dependent on the stochastic properties of the stream of cash flows. Particularly we studied the following 
cases: (1) first-order auto regressive process without disruption of cash flows, (2) trend-stationary process 
without disruption of cash flows, (3) first-order auto regressive process with an disruption in case of 
negative cash flows, and (4) first-order auto regressive process with disruption in case of negative future 
values. Table 2 summarizes the formulas and most important properties for these cases. 

Assuming a time-invariant pricing kernel, required returns (or discount rates) are deterministic and time-
invariant if the cash-flow generating process is undisrupted and autoregressive of first order. Other 
processes generally lead to either time-varying or stochastic discount rates. If the cash flow is generated 
by a trend-stationary process or particular types of disrupted autoregressive processes, the present value 
approach can easily be adjusted to produce correct present values. “Correct” is here meant in the sense 
that we obey the arbitrage-freeness of markets, and that discount rates (required returns) reflect the 
opportunity costs of capital. However, more complex cash flows generally require stochastic discount 
rates. This means that the traditional present value approach is not applicable. 

Of course, from a pragmatic point of view, one could always claim that there is some constant yield 
(discount rate), that leads to the same present value as if stochastic discount rates were applied. Let us 
for example look at Figure 7. The numerical values in this figure our based on the following initial expected 
cash flow: 𝐶𝐹ଵ = 100, 𝐶𝐹ଶ = 150 and 𝐶𝐹ଷ = 2,000. The present value 𝑉଴ = 8,627.94 was computed by 
the risk-neutral approach. The same present value could have been achieved by using a constant and 
time-invariant discount rate of 𝑟 = 5.984 %. It would produce exactly the same present value at 𝑡 = 0 
like in Figure 7. However, the question remains as to what economic meaning should be attributed to this 
discount rate. This rate would only compute a correct present value for 𝑡 = 0, but not for any other point 
in time. It cannot be interpreted as an opportunity cost of capital. If we cannot attribute such a meaning 
to the discount rate, the question arises how it should be determined empirically. 

In the very end, we can say that traditional present value methods work well if we assume autoregressive 
processes. As long as the valuation practitioner is aware of this assumption and can live with this 
assumption, there is no need to think about alternative valuation methods. For more complicated cash 
flows, the valuation practitioner needs to ask, whether the present value method should be replaced by 
approaches that use stochastic discount factors or risk neutral probabilities. This is a common approach 
with respect to the valuation of financial or real options, and there exists empirical research that aims at 
estimating these quantities (pricing kernels). Traditional present value calculations are very useful with 
respect to banking services like savings accounts, mortgages or reversed mortgages, where we basically 
work with deterministic cash flows and interest rates. However, these traditional calculations may not be 
applicable in stochastic environments. Standard textbooks, however, provide the impression that 
standard present value calculations can easily be applied to capital budgeting, investment analysis, or 
firm valuation. We believe it is important to point out the limitations and strict assumptions of this 
approach early in the education of finance students and we hope that this paper shows a step in this 
direction. 
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(A) 
 

Nondisrupted first-
order autoregressive 
cash flow: 

Recursive valuation: 

𝑉௧ିଵ =
𝔼଴ൣ𝐶𝐹෪

௧൧ + 𝔼଴[𝑉෨௧]

1 + 𝑟େ୚
=

𝔼଴ൣ𝐶𝐹෪
௧൧

1 + 𝑟େ
+

𝔼଴[𝑉෨௧]

1 + 𝑟୚
 

where 𝑟େ୚ = 𝑟େ = 𝑟୚ are constant. 
 
Sum of discounted cash flows: 

𝑉଴ = ෍
𝔼଴ൣ𝐶𝐹෪

௧൧

1 + 𝑟େ୚

்

௧ୀଵ

 

 
(B) 
 

Nondisrupted 
trend-stationary cash 
flow 

Recursive valuation: 

𝑉௧ିଵ =
𝔼଴ൣ𝐶𝐹෪

௧൧ + 𝑉௧

1 + 𝑟େ୚,௧
=

𝔼଴ൣ𝐶𝐹෪
௧൧

1 + 𝑟େ
+

𝑉௧

1 + 𝑟୤
 

where 𝑟େ୚,௧ ≠ 𝑟େ ≠ 𝑟୚ and 𝑟୚ = 𝑟୤ 
usually, we would assume that 𝑟େ > 𝑟େ୚ > 𝑟୤ 
 
Sum of discounted cash flows: 

𝑉଴ = ෍
𝔼଴ൣ𝐶𝐹෪

௧൧

(1 + 𝑟େ) ∙ (1 + 𝑟୤)
௧ିଵ

்

௧ୀଵ

 

 
(C) 
 

First-order 
autoregressive cash 
flow with rule of 
disruption 𝜀௧ < 0 
(negative cash flows 
incur before 
disruption) 
 

Recursive valuation: 

𝔼଴[𝑉௧ିଵ] =
𝔼଴ൣ𝐶𝐹෪

௧൧ ∙ 𝜀̅ ∙ 𝜀ା̅
௧ିଵ + 𝔼଴[𝑉෨௧]

1 + 𝑟େ୚,௧
=

𝔼଴ൣ𝐶𝐹෪
௧൧ ∙ 𝜀̅ ∙ 𝜀ା̅

௧ିଵ

1 + 𝑟େ
+

𝔼଴[𝑉෨௧]

1 + 𝑟୚
 

where 𝑟େ୚,௧ ≠ 𝑟େ ≠ 𝑟୚ 
we may assume that 𝑟େ > 𝑟େ୚ > 𝑟୚ > 𝑟୤ 
 
Sum of discounted cash flows: 

𝑉଴ = ෍
𝔼଴ൣ𝐶𝐹෪

௧൧ ∙ 𝜀̅ ∙ 𝜀ା̅
௧ିଵ

(1 + 𝑟େ) ∙ (1 + 𝑟୚)௧ିଵ

்

௧ୀଵ

 

 
(D) 
 

First-order 
autoregressive cash 
flow with rule of 
disruption 𝜀௧ < 0 
(negative cash flows 
are avoided before 
disruption) 

Recursive valuation: 

𝑉௧ିଵ =
𝔼଴ൣ𝐶𝐹෪

௧൧ ∙ 𝜀ା̅
௧ + 𝔼଴[𝑉෨௧]

1 + 𝑟େ୚
=

𝔼଴ൣ𝐶𝐹෪
௧൧ ∙ 𝜀ା̅

௧

1 + 𝑟େ
+

𝔼଴[𝑉෨௧]

1 + 𝑟୚
 

where 𝑟େ୚ = 𝑟େ = 𝑟୚ > 𝑟୤ 
 
Sum of discounted cash flows: 

𝑉଴ = ෍
𝔼଴ൣ𝐶𝐹෪

௧൧ ∙ 𝜀ା̅
௧

(1 + 𝑟୚)௧

்

௧ୀଵ

 

(E) 
 

First-order 
autoregressive cash 
flow with rule of 
disruption: 

𝐶𝐹෪
௧ + 𝑉෨௧ < 0 

 

Special cases (A) or (D) can occur.  
 
Generally, the formulas above are not applicable. 
 
Generally, discount rates are time varying and stochastic. 

Table 2: Present value formulas for different stochastic cash flow 
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Appendix A Forward generation of cash flows and backward iteration 
based on risk-neutral approach 

We have used the risk-neutral evaluation to back up the values in the scenario trees of Figures 2 to 5. 
Furthermore, we used this approach for finding the values in the trees in Figure 6 and 7. This approach 
works as follows. First, all cash flows in all nodes are simulated in a forward manner. Specifically, this 
forward generation works as follows: 

Create root node with node index 𝑛 = 0 
Set the auxiliary node index 𝑚 = 0 
Create a set ℬ that contains node index 𝑚 = 0 
For each 𝑡 from 0 to 𝑇 − 1: 
 For each node 𝑛 at point in time 𝑡 
  For node 𝑛, create an empty set 𝒞(𝑛) to which the indexes of the child nodes will be 

added. 
  For each state 𝑠 ∈ 𝑆: 
   Increase auxiliary node index by 1, i. e. 𝑚 = 𝑚 + 1  
   Add node index 𝑚 to 𝒞(𝑛) 

Generate corresponding 𝐶𝐹[௠] by the stochastic rule. 
For example:  
𝐶𝐹[௠] = 𝜀௦ ∙ 𝑎௧ (trend-stationary) 
 
or 𝐶𝐹[௠] = 𝐶𝐹௉(௠) ∙ 𝜀௦ ∙ 𝑏௧ (auto-regressive) 
 

or 𝐶𝐹[௠] = ቐ

𝐶𝐹௉(௠) ∙ 𝜀௦ ∙ 𝑎௧ if 𝜀௦ ≥ 0

⬚ ⬚ ⬚
0 if 𝜀௦ < 0

 (auto-regressive with disruption) 

 
Assign real and risk-neutral and probabilities to nodes: 

𝑝[௠] = 𝑝௦ 
𝜋[௠] = 𝜋௦ 

 
As long as 𝑡 = 𝑇 − 2, add node index 𝑚 to the set ℬ. 
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After having generated the tree of cash flows, we can find all continuation values in all nodes at 𝑡 = 1 to 
𝑡 = 𝑇 − 1 and the present value at 𝑡 = 0 by the following backward iteration: 

For each node index 𝑛 in ℬ, descending from the largest index to the smallest index: 
 Compute the continuation value: 

𝑉[௡] = ෍
𝜋[௠]

1 + 𝑟୤
∙ ൫𝐶𝐹[௠] + 𝑉[௠]൯

௠∈𝒞(௡)

 

 
 Calculate the return: 

𝑟[௡] =
∑ 𝑝[௠] ∙ ൫𝐶𝐹[௠] + 𝑉[௠]൯௠∈𝒞(௡)

𝑉[௡]
− 1 

 
 

The forward generation of cash flows and the backward iteration requires the following input parameters: 
risk-free rate 𝑟୤, states 𝑠 = 1, … , 𝑆, points in time 𝑡 = 1, … , 𝑇, risk-neutral probabilities 𝜋௦, real 
probabilities 𝑝௦, stochastic parameter 𝜀௦, scaling factors 𝑎௧ or 𝑏௧ 

 

Appendix B Choice of discount rates and risk-neutral probabilities 

In sections above we have assumed certain values for the discount rates. Particularly, these were 𝑟୤ =

5 %, 𝑟େ = 10 %, and 𝑟୚ = 9.6 %. These rates were assumed. However, these discount rates and the 
pricing kernel are related to each other. With three scenarios, each with real probability 1/3, we can 
retrieve the rates 𝑟େ = 10 % and 𝑟୚ = 9.6 % as follows: 

For 𝑟େ, the discount rate of anything proportional to 𝜀̃ = {2.3, 0.8, −0.1}, we formulate: 

1
3

∙ 2.3 +
1
3

∙ 0.8 +
1
3

∙ (−0.1)

1 + 10 %
=

𝜋ଵ ∙ 2.3 + 𝜋ଶ ∙ 0.8 + (1 − 𝜋ଵ − 𝜋ଶ) ∙ (−0.1)

1 + 5 %
 

where 𝜋ଵ, 𝜋ଶ and 𝜋ଷ = (1 − 𝜋ଵ − 𝜋ଶ) are the risk-neutral probabilities. This expression can be 
shortened: 

1 + 5 %

1 + 10 %
+ 0.1 = 𝜋ଵ ∙ 2.4 + 𝜋ଶ ∙ 0.9 

For 𝑟୚, the discount rate of 𝜀̃ = {2.3, 0.8, 0} we formulate: 

1
3 ∙ 2.3 +

1
3 ∙ 0.8 +

1
3 ∙ 0

1 + 9.6 %
=

𝜋ଵ ∙ 2.3 + 𝜋ଶ ∙ 0.8 + (1 − 𝜋ଵ − 𝜋ଶ) ∙ 0

1 + 5 %
 

This is: 

31/30 ∙ (1 + 5 %)

1 + 9.6 %
= 𝜋ଵ ∙ 2.3 + 𝜋ଶ ∙ 0.8 
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If we solve these two equations, we obtain the risk-neutral probabilities: 

𝜋ଵ ≈ 0.315539, 𝜋ଶ ≈ 0.330281, 𝜋ଷ ≈ 0.354180 

We can now use these risk-neutral probabilities to find values of other stochastic cash flows. The rate 
applied in Figure 3 is found as: 

𝑟େ (୊୧୥୳୰ୣ ଷ) =
𝑝ଵ ∙ 2.3 + 𝑝ଶ ∙ 0.8 + (1 − 𝑝ଵ − 𝑝ଶ) ∙ 0

𝜋ଵ ∙ 2.3 + 𝜋ଶ ∙ 0.8 + (1 − 𝜋ଵ − 𝜋ଶ) ∙ 0
∙ (1 + 5 %) − 1 

 

=

1
3

∙ 2.3 +
1
3

∙ 0.8

0.315539 ∙ 2.3 + 0.330281 ∙ 0.8
∙ (1 + 5 %) − 1 

 

= 9.6 % 
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Appendix C Trend-stationary case with disrupted cash flows 

This appendix shows the calculation of present values and the behavior of discount rates for cash flows 
which are trend-stationary and disrupted according to the following assumption: 

Assumption 3e – Disrupted trend-stationary cash flows: The stream of cash flows is driven by the following 
process: 

 𝐶𝐹෪
௧ = ቐ

𝜀௧̃ ∙ 𝑎௧ if 𝐶𝐹௧ିଵ ≥ 0

⬚ ⬚ ⬚
0 if 𝐶𝐹௧ିଵ < 0

     with     𝔼௧ିଵ[𝜀௧̃] = 1 (21) 

 

In this process, we should enforce 𝑎௧ > 0. Otherwise, the cash flow stops whenever 𝑎௧ < 0. 

By means of backward iteration, we compute the values: 

The value at 𝑇 − 1: 

𝑉்ିଵ =

⎩
⎨

⎧
𝑎் ∙ 𝔼்ିଵ[𝜀்̃ ]

1 + 𝑟େ
if 𝐶𝐹்ିଵ ≥ 0

⬚ ⬚ ⬚
0 if 𝐶𝐹்ିଵ < 0

 

The expectation of this value seen from 𝑇 − 2 is as follows (note that 𝔼்ିଵ[𝜀்̃ ] = 1):  

𝔼்ିଶ[𝑉෨்ିଵ] =
𝑎்

1 + 𝑟େ
∙ 𝔼்ିଶ ൥൝

1 if 𝑎்ିଵ ∙ 𝜀்̃ ିଵ ≥ 0

⬚ ⬚ ⬚
0 if 𝑎்ିଵ ∙ 𝜀்̃ ିଵ < 0

ൡ൩ 

Because 𝜀௧̃ is independently and identically distributed, the term ൝

1 if 𝑎்ିଵ ∙ 𝜀்̃ ିଵ ≥ 0

⬚ ⬚ ⬚
0 if 𝑎்ିଵ ∙ 𝜀்̃ ିଵ < 0

ൡ is 

independently and identically distributed for 𝑎௧ > 0. We denote its expectation by 𝜑ା. It needs to have 
its own discount rate 𝑟୚ (note that this rate does not have the same magnitude/value as in the case of an 
autoregressive process). This discount rate becomes closer to the risk-free rate 𝑟୤ as the probability of 
𝜀்̃ ିଵ < 0 decreases. 

The value at 𝑇 − 2 is: 

𝑉்ିଶൣ𝐶𝐹෪
்ିଵ + 𝑉෨்ିଵ൧ =

⎩
⎪
⎨

⎪
⎧𝔼்ିଶൣ𝐶𝐹෪

்ିଵ൧

1 + 𝑟େ
+

𝑎் ∙ 𝜑ା

(1 + 𝑟େ) ∙ (1 + 𝑟୚)
if 𝐶𝐹்ିଶ ≥ 0

⬚ ⬚ ⬚
0 if 𝐶𝐹்ିଶ < 0

 

This is: 

  

𝑉்ିଶൣ𝐶𝐹෪
்ିଵ + 𝑉෨்ିଵ൧ = ൬

𝑎்ିଵ

1 + 𝑟େ
+

𝑎் ∙ 𝜑ା

(1 + 𝑟େ) ∙ (1 + 𝑟୚)
൰ ∙ ൝

1 if 𝑎்ିଶ ∙ 𝜀்̃ ିଶ ≥ 0

⬚ ⬚ ⬚
0 if 𝑎்ିଶ ∙ 𝜀்̃ ିଶ < 0
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The expectation at 𝑇 − 3: 

𝔼்ିଷ[𝑉෨்ିଶ] =
𝑎்ିଵ ∙ 𝜑ା

1 + 𝑟େ
+

𝑎் ∙ 𝜑ା
ଶ

(1 + 𝑟େ) ∙ (1 + 𝑟୚)
 

Hence, the value at 𝑇 − 3 is: 

𝑉்ିଷൣ𝐶𝐹෪
்ିଶ + 𝑉෨்ିଶ൧ =

𝑎்ିଶ

1 + 𝑟େ
+

𝑎்ିଵ ∙ 𝜑ା

(1 + 𝑟େ) ∙ (1 + 𝑟୚)
+

𝑎் ∙ 𝜑ା
ଶ

(1 + 𝑟େ) ∙ (1 + 𝑟୚)ଶ
 

Recognizing the recursive structure, we can state the value at 𝑡 = 0 as follows:  

𝑉଴ = ෍
𝑎௧ ∙ 𝜑ା

(௧ିଵ)

(1 + 𝑟େ) ∙ (1 + 𝑟୚)(௧ିଵ)

்

௧ୀଵ
 

With numerical values this is: 

𝜑ା =
1

3
∙ 1 +

1

3
∙ 1 +

1

3
∙ 0 = 2/3 

 

𝑉଴ =
100

1 + 10 %
+

150 ∙ 2/3 

(1 + 10 %) ∙ (1 + 8.3894 %)
+

200 ∙ (2/3)ଶ

(1 + 10 %) ∙ (1 + 8.3894 %)
= 243.5647 

 

The behavior of cash flows, discount rates, and values is shown in Figure 8. 
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Figure 8: Evolution of cash flows, values, and discount rates for disrupted trend-stationary CF streams  
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